Kommentar schreiben zu:
Die Mondlandungslüge

Vorschau:
Die Mondlandefähre von Apollo 11 wäre sowohl beim Abstieg, als auch beim Abflug vom Mond auf dem Erdtrabanten aufgeknallt und zerschellt!
1. Die Mondlandung mit der Abstiegsstufe
Die Parameter der Abstiegsstufe sollten nach dem Gustus der NASA laut Internet (Wikipedia 2018 im Januar folgende gewesen sein:
1. Gesamtmasse der Abstiegsstufe inklusive Aufstiegsstufe ca. Mo1=15 t;
2. Schub S=45 kN;
3. Masse des Treibstoffes MmTr1=8,2 t
4. Leermasse ML1= Mo1-MTr1= 15 t-8,2 t=6,8 t
5. Effektive Ausströmgeschwindigkeit ve= 2,6 km/s der Treibstoffkombination Dimethylhydrazin (C2H8N2) und Distickstofftetroxid (N2O4) (die NASA gibt zwar ca. 3,0 km/s an - diese effektive Ausströmgeschwindigkeit konnte man 1969 noch nicht erzielen - erst mit dem Zusatz von metallischen Katalysatoren erzielt man seit den neunziger Jahren über 3 km/s).
Mit diesen Angaben lässt sich die Machbarkeit der etwaigen Landung der Mondlandefähre auf dem Mond überprüfen. Nach der Raketengrundgleichung errechnet sich die potentielle Brennschlussgeschwindigkeit der Mondlandefähre, die zum Abbremsen erzeugt wird zu

vB= ve*ln (Mo1: ML1)=2,6 km/s*ln (15:6,8) = 2,6 km/s *0.79 ≈ 2,057 km/s. (1)

Hiervon muss man aber noch den Verlust an Geschwindigkeit, der bei der Landung auf dem Mond durch die Schwerkraft des Mondes resultiert, subtrahiert werden. Dieser Geschwindigkeitsverlust beträgt

∆vg= √2*H*gm= √2*100.000) m*1,61 m/s²= 567 m/s ≈ 0,567 km/s. (2)

Damit beträgt zunächst einmal die resultierende Geschwindigkeit vr nach (2) lediglich nur noch

vr= 2,057 km/s - 0,567 km/s = 1,49 km/s ≈ 1,5 km/s. (3)

Über die Brennschlusszeit tB und die Gravitationsbeschleunigung g lässt sich ebenfalls der Geschwindigkeitsverlust errechnen. Aus dem Schub S und der effektiven Ausströmgeschwindigkeit ve lässt sich zunächst einmal der Massedurchsatz md mit der Formel

md= S:ve= 45.000 N: 2600 m/s= 45.000 kgm/s²:2600 m/s≈ 17,3 kg/s. (4)

berechnen. Dividiert man nun die Treibstoffmasse mTr durch den Massedurchsatz md, dann erhält man die Brennschlusszeit zu

tB= 8200 kg: 17,3 kg/s ≈ 474 s. (5)

Damit ergibt sich ein Geschwindigkeitsverlust von sogar

∆vtb = tB* g= 474 s*1,61 m/s² ≈ 763 m/s =0,763 km/s. (6)

Im Resultat dessen würde die resultierende Geschwindigkeit vr nur

vr= 2,057 km/s - 0,763 k/s = 1,294 km/s ≈ 1,3 km/s (7)

betragen. Damit wäre in beiden Fällen (siehe Formel 2 und 6) niemals die notwendige kompensatorische Zentrifugalgeschwindigkeit von

v= √ (H+r)* g = √(1740.000 m+100.000 m)*1,61 m/s²= 1721 m/s ≈ 1,7 km/s (8)

erzielt worden, um eine sanfte Landung hinzubekommen und die Fähre wäre mit einer Geschwindigkeit von 200 m/s bis 400 m/s (je nach Berechnungsmodell) auf dem Mond aufgeknallt und zerschellt!

2. Der Start vom Mond mit der Aufstiegsstufe

Die Parameter der Aufstiegsstufe sollten der NASA nach laut Internet (Wikipedia 2018 im Januar folgende gewesen sein:
1. Gesamtmasse der Aufstiegsstufe inklusive Aufstiegsstufe ca. Mo2=4,7 t;
2. Schub S=15,6 kN;
3. Masse des Treibstoffes MTr2=2.35 t
4. Leermasse ML2= Mo2-MTr2= 4,7 t-2,35 t=2,35 t
5. Effektive Ausströmgeschwindigkeit wie bei der Abstiegsstufe ve= 2,6 km/s

Mit diesen Angaben lässt sich nun die Machbarkeit des etwaigen Startes der Mondlandefähre vom Mond überprüfen. Nach der Raketengrundgleichung errechnet sich die potentielle Brennschlussgeschwindigkeit der Aufstiegsstufe der Mondlandefähre zu

vB= ve*ln (Mo2: ML2)=2,6 km/s*ln (4,7:2.35) = 2,6 km/s *0.69 ≈ 1,8 km/s. (9)

Hier könnte man eigentlich aufhören, da bei der Aufstiegsstufe noch ungünstigere raketentechnische Voraussetzungen vorliegen, als bei der Abstiegsstufe. Aber fahren wir fort der Vollständigkeit halber: Von den 1,8 km/s muss man aber ebenfalls noch den Verlust an Geschwindigkeit, der bei dem Rückflug in den Mondorbit durch die Schwerkraft des Mondes resultiert, subtrahieren. Dieser Geschwindigkeitsverlust beträgt ebenfalls wie unter (2) nicht anders zu erwarten

∆vg= √2*H*gm= √2*100.000) m*1,61 m/s²= 567 m/s ≈ 0,567 km/s. (10)

Damit beträgt zunächst einmal die resultierende Geschwindigkeit vr nach (9 und 10) lediglich nur noch
vr= 1,8 km/s - 0,567 km/s = 1,233 km/s ≈ 1,2 km/s. (11)

Über die Brennschlusszeit tB und die Gravitationsbeschleunigung g lässt sich ebenfalls der Geschwindigkeitsverlust für den Aufstieg berechnen. Es ergibt sich aus dem Schub S und der effektiven Ausströmgeschwindigkeit ve ein Massedurchsatz von

md= S:ve= 15.600 N: 2600 m/s= 15.600 kgm/s²:2600 m/s≈ 6 kg/s. (12)

Dividiert man nun die Treibstoffmasse mTr durch den Massedurchsatz md, dann erhält man die Brennschlusszeit zu

tB= 2350 kg: 6 kg/s ≈ 392 s. (13)

Damit ergibt sich ein Geschwindigkeitsverlust von sogar

∆vtb = tB* g= 392 s*1,61 m/s² ≈ 631 m/s =0,631 km/s. (14)

Im Resultat dessen würde die resultierende Geschwindigkeit vr nur

vr= 1,8 km/s - 0,631 k/s = 1,169 km/s ≈ 1,2 km/s (15)

betragen. Damit wäre in beiden Fällen (siehe Formel 11 und 15) niemals die Orbitgeschwindigkeit von

v= √ (H+r)* g = √(1740.000 m+100.000 m)*1,61 m/s²= 1721 m/s ≈ 1,7 km/s (16)

erzielt worden, und die Mondlandefähre wäre auf dem "halben Weg" in den Orbit abgestürzt und wiederum auf dem Mond aufgeknallt und zerschellt! Fazit: Es konnte weder die Landung auf dem Mond noch der Aufstieg zum Mondorbit forciert werden und wenn, dann müssten sich die amerikanischen Astronauten noch auf dem Mond befinden!

Siegfried Marquardt, Königs Wusterhausen

 
Hier können Sie einen Kommentar schreiben

Ihr Kommentar:


Phantasiename

Ihr Kommentar
Diese Webseite ist spendenbasiert. Ihre Fragen werden auf Spendenbasis beantortet. Mit dem Absenden/Speichern stimmen Sie der AGB zu. Es werden keine persönlichen Daten gespeichert.



home Übungen zum Glücklichsein Esoterik Wissensbase: Esoterik Gedankenkraft Geistheilung Gesundheit Psychologie Ängste Loslassen Christentum Symbole Meditation Partnerschaft Traumdeutung Astrologie Kartenlegen Geld Musik Sonstige Arbeitsblätter Bücher News News-Archiv Online-Orakel Schlank werden Suche Wunschthema DANKE
Telegram Kanal folgen auf X folgen

Home | Impressum | Texte